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ABSTRACT

Software testing plays a significant role in the development of complex software systems.

Current testing methods generally require significant effort to generate meaningful test cases. The

QUEST/Ada* system is a prototype system designed using CLIPS (7) to experiment with expert

system based test case generation. The prototype is designed to test for condition coverage, and
attempts to generate test cases to cover all feasible branches contained in an Ada program. This

paper reports on heuristics used by the system. These heuristics vary according to the amount of

knowledge obtained by preprocessing and execution of the boolean conditions in the program.

INTRODUCTION

There are many approaches to software testing, and most require considerable human

interaction at a great cost in man hours. The goal of automating this activity is to provide for more

cost effective software testing and to avoid human bias or oversight. One class of automated testing

tools, the dynamic analysis tools, is characterized by direct execution of the program under test (3).

A test data generator is a dynamic analysis tool designed to assist the user in achieving goals such as

statement coverage, condition coverage, or path testing. The difficulties of test data generation are

due to the computation efforts, sometimes wasted, in computing infeasible paths or solving arbitrary

path predicates, especially if a predicate contains non-linear terms or function calls. Consequently

AI approaches must be utilized to avoid these problems.

QUEST/Ada* is a prototype system that is designed to experiment with expert system based

test case generation. This system seeks to achieve its goals using heuristic rules to choose and

generate new test cases. This paper reports on various rule sets designed to achieve condition

coverage of Ada programs with increasing amounts of knowledge about the conditions in the Ada

program. Knowledge can vary from little information about the input data (requiring random case
generation of the appropriate type of input data), to complete symbolic solutions for variables in the
conditions under test.

*Research and development of the QUEST/Ada system has been supported by the National Aero-

nautics and Space Administration (NASA). Ada is a trademark of the United States Government, Ada

Joint Program Office.
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BACKGROUND

Testing

Thereliability of softwareis critical to spaceapplications.Oneof themostcommonwaysof
ensuringsoftwarereliability is throughprogramtesting.Therearethreemajorcategoriesof software
testing:domaintesting,functionaltestingandstructuraltesting.

Domaintesting
Programsrun on finite statemachinesover finite input sets. Consequentlyit is theoretically

possibleto prove a programcorrectby testingit over its input domain. However in generalthese
domainsaretoo largefor this typeof testingto be feasible. It is thereforeassumedthatprogramsof
arbitrarylargestoragerequirementsrunonmachinesof arbitrarylargesizeandprecision. Unfortu-
natelythis assumptionleadsto resultsthatdemonstratethe impossibilityof analgorithmto determine
correctnessof aprogram(4).

Functionaltesting
Functionaltestingis the processof attemptingto find discrepanciesbetweentheprogram's

outputandits requirementsspecification(6). In functionaltesting(1) (4) aprogramisexecutedover
selectedinput andtheresultsarecomparedwith expectedoutput. Normally nothingis assumedabout
the internalstructureof theprogram.Rather,testcasesareconstructedfrom knowledgeof "what the
programis supposedto do", i.e. its "function". This isknownasthe "blackbox" approachto testing

Structuraltesting
Structuralor "white box" testing uses the source code control structure of a program to guide

the selection of test data (1). One metric for the selection process is coverage, which is concerned

with the number of structural units exercised by a test case. Examples of this metric are

Statement Coverage -

Branch Coverage -

Path Coverage -

execute all statements in the program graph;
encounter all exit branches for each

decision node in the program graph;

traverse all paths of the graph.

Attempts to develop a practical test generation methodology for branch coverage have sug-

gested approaches ranging from random test generation to full program path predicate solutions.

Howden (4) has formalized test generation rules to help programmers test their code. Consequently
such rules can be considered "expert knowledge" required for effective and automatic test case gen-

eration in an expert system test case generator.

Test case generation

The success of test data generation depends on knowledge of the intemal structure of the

program. Indeed, in the absence of any such knowledge, the only known testing method is random

generation of test data and probabilistic determination of the equivalence of the function under test
with desired behavior. On the other hand, if the structure of the program is well understood then by

testing, complete validation over a limited domain may be possible. Consider for example a program

consisting of a single input variable containing only assignment and increment operations. Such a

restriction of a program determines that it can only compute a constant function f(x) = c or a linear

function f(x) = x + c for some constant value c. With this knowledge two test cases are consequently
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sufficient to identify and validate the program.

Branch coverage is currently regarded as a minimal standard of achievement in structural test-

ing (5). Thus, the goal of an expert system test case generator is to achieve branch coverage by using

heuristic rules with execution feedback to generate test cases sufficient to insure that each branch in a

program is invoked at least once. Figure 1 gives a system overview of such a test case generation
methodology.

Initial Case Generation J

Coverage .Analysis

and

Goodness Evaluation

1
_- New Case Generation

J

Figure 1

To avoid exponential searches, the analysis may be supported by a search strategy such as that

proposed by Prather and Myers (5). This strategy views a software package as a flowgraph with each

condition containing a true and false branch. The goal for test cases is to maximize the number of
covered branches as recorded in a branch coverage table. The strategy is to select the first condition

in a path from the start for which the condition has not yet been tested in both directions, and to

generate (if possible) a test case that will drive this condition in the other direction. The idea behind
this strategy is that, since some previous test case has reached the condition, it is already "close" to a

test value required to drive an alternate branch of the condition.

AN INTELLIGENT TEST DATA GENERATION SYSTEM

QUEST/Ada is a prototype automated software testing tool presently implemented to support

expert system based coverage analysis. The framework of QUEST/Ada will however support other

rule based testing methods. Figure 2 gives an overview of the relationships among the major compo-

nents of the system. An instrumented Ada module is supplied as input to a parser scanner that gathers
information about the conditions being tested. Using compiled output of the parser/scanner, the test

coverage analyzer executes the program for a test case and analyses the result. Based on this analysis,

the test data generator uses rules to create new values for variables that are global to or are parameters
to the unit under test. These variables are called "input variables".
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Initial test cases are needed to start the process. These may be provided by the user or gener-

ated by the system using an initial test case generation rule. Upon execution of the program on test
cases, coverage analysis determines what branches have been covered and which branches need fur-

ther testing. Coverage analysis is basically a table fdling process recording the execution of each
condition of the program. The expert system generates new test cases by applying rules based on

knowledge about both the conditions not yet fully covered, and previous conditions in the execution

path that lead to the condition not fully covered. New test cases are generated, and the testing
continues. Execution stops when full coverage is indicated, or when a test case limit is reached, hn-

plementation details of the QUEST/Ada system are described in (2).

Rule Based Test Case.Generation

As designed, the QUEST/Ada system's performance is determined by the initial test case, rules
chosen to generate new test cases, and the method used to select a best test case when there are several

test cases that are known to drive a path to a specific condition.

Initial cases

If the user does not supply an initial test case, then initial test cases are generated by rules that
require knowledge of the type and range of the input variables. For these variables test cases are

generated to represent their mid-range, i.e. (upper-limit - lower-limit)/2, lower and upper values.

Best test case selection

When there are several test cases that drive a condition in a particular way, a rule is used to

select from among these test cases a best test case. Experhnents are being conducted with two "best
test case" selection rules, with the second rule intended to be more knowledgeable than the first. In the
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first rule, thebesttest case represents a measure of the closeness of the left hand side (LHS) and the

right hand side (RHS) of the condition as determined by the formula

ILHS - RHSI/(2*MAX(ILHSI,IRHSI).

The idea is that test values closer to the boundary of the condition are better. Problems arise in the

march algorithm's attempt to cover all branches when a change in values of input variables change

an execution path, and execution no longer reaches the condition. In order to decrease the likelihood
of such unanticipated branching, a second approach to best test case selection has been designed.

This approach utilizes information about the conditions in the execution path leading to the condition
under consideration. In this situation, the formula for best test case selection takes into account the

closeness of previous conditions. The heuristic idea is that for previous conditions in the execution

path, the left hand side and right hand side of these conditions should be further apart. This heuristic

assumption is based on the idea that small changes in the values affecting the condition under
consideration will have a smaller impact on previous conditions when the left hand side and right

hand side are far apart.

As an example, if two conditions c.,c z precede condition c in the execution path, and t t ,t
re resent the "closeness" values associated with a test case t, then °for weights w ,w ,w a value j' 2 3

P t 2 3
determined by

*t + + wt*(1/t I)W3 3 w2*(1/t2)

represents a better measure of the test case than does the value t3. Note that the values of tt,t2,t 3 are
in [0,11.

In general, if c i, c2, ... c_ t represent a path of conditions leading to a condition c, and for
each i = l..n

t.=ILHS of c - RHS of c.I/2*max(ILHS of c.I,IRHS of c.I)
I i I i I

then for some weights w i, ... w, the best test case for condition n is chosen by a minimum value of

v=w*t +w It +...+Wl/t !.n n n-I n-I

For testing in QUEST, weights of 1 for w and 1/(n-l) for Wl...Wn. ! were chosen.

Test case generation

In order to experiment with the effects of altering the knowledge about the conditions of a

program under test, three categories of rules have been selected. The rules are in the syntax of
"CLIPS" (7), a forward chaining expert system tool used by the QUEST/Ada prototype. Comments

(lines beghming with ;) are intended to explain the action of the rule. The first category of rule

reflects only "type" (integer, float, etc.) knowledge about the variables contained in the conditions.

These rules generate new test cases by randomly generating values. The following listing provides

an example of this type of rule.

Listing 1.

(defrule generate_random_test_cases ....

(types $?type_list)
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;useonly typeand
(low_bounds$?low_bounds_list)

;boundaryinfo
(high_bounds$?high_bounds_list)

;toavoidrunerror
=>

;set up a loop to generate n test cases for the

;n input variables

(bind ?outer_pointer 1)

(while (<= ?outer_pointer (length $?type_list))

;get test case number

(bind ?test_number (test_number))

(format test-case-file " %d" ?test_number)

;step thru each variable

(bind ?inner_pointer 1)

(while (<= ?inner_pointer (length $?type_list))

;get the type of the variable

(bind ?type (nth ?inner_pointer $?type_list))

;assign it a random value

(bind ?random_value (rand()))

;get range information

(bind ?low_bound

(nth ?inner_pointer $?low_bounds_list))

(bind ?high_bound

(nth ?inner pointer $?high_bounds_list))

;be sure random value is within bounds

(if (> ?random_value ?high_bound) then

(bind ?test_value

(* (] ?high_bound ?random_value) ?high_bound))

else

(bind ?test_val_ae ?random_value))

(if (< ?random_value ?low_bound) then

(bind ?test_value

(* (/?low_bound ?random_value) ?low_bound))

else

(bind ?test_value ?random_value))

;write value for the variable to the test case file

;in appropriate format

(if (eq ?type int) then

(format test-case-file " %d" ?test_value))

(ff (eq ?type f'txed) then

(format test-case-fde " %f" ?test_value))

(if (eq ?type float) then

(format test-case-file " %e" ?test_value))

;next variable in test case
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(bind?inner__pointer(+ ?inner_pointer1)))
(fprintout test-case-file crlf)

;next test case

(bind ?outer_pointer (+ ?outer_pointer I)))

)

The second category of rule attempts to incorporate information that is routinely obtained by

a parse of the expression that makes up a condition (such as "type" and "range"), information about

coverage so far obtained, and best test cases for previous tests. This particular example uses the best
test case associated with a condition, and for n input variables, generates n test cases by altering each

variable one percent of its range. Listing #2 gives and example of this category of rule.

Listing 2.

(defrule generate_increment_by_one_percent_test_cases ....

(types $?type_list)

(low_bounds $?low_bounds_list)

(high_bounds $?high_bounds_list)

;match any condition that is only half covered

(coverage_table ?decision ?condition truelfalse)

;get the best test case for each condition

(best_test_case ?decision ?condition $?values)

=>

(bind ?outer_pointer 1)

(while (<= ?outer_.pointer (length $?values))

(bind ?test_number (test_number))

(format test-case-f "de" %d" ?tesLnumber)

(bind ?inner__pointer 1)

(while (<= ?inner__pointer (length $?values))

(bind ?type (nth ?inner_pointer $?type_list))

(bind ?high_bound

(nth ?inner__pointer $?high_bounds_list))

(bind ?low_bound

(nth ?inner__pointer $?low_bounds_list))

;increment the current variable by one percent of

;its range

(bind ?one_percent (/(- ?high_bound ?low_bound) 100))

(bind ?increment

(+ (nth ?inner__pointer $?values) ?one_percent))

;if this is the variable we want to alter

(if (= ?outer__pointer ?inner_pointer) then

(if (<= ?increment ?high_bound) then

(bind ?test_value ?increment)

else

(bind ?test_value ?low_bound))

else
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;andtheothervariablesarewrittenasis
(bind ?test_value(nth ?inner__pointer$?values)))

(if (eq?typeint) then
(format test-case-file " %d" ?test_value))

(if (eq ?type fixed) then

(format test-case-file " %f" ?test_value))

(if (eq ?type float) then

(format test-case-file " %e" ?test_value))

(bind ?inner__pointer (+ ?inner_pointer 1)))

(fprintout test-case-file crlf)

(bind ?outer__pointer (+ ?outer__pointer 1)))

The final type of rule utilizes information about the condition that can be obtained by

symbolic manipulation of the expression. The given rule uses a boundary point for input variables

associated with the true and false value of a condition. This value is determined by using symbolic

manipulation of the condition under test. Many values can be chosen that cross the boundary of the
condition and, as with best test case selection, we seek to choose a value that will not alter the

execution path to the condition. In addition to best test case selection we now have additional

knowledge to generate new test cases. We use the values of variables at a condition and compare

them with values of the variables that reach the condition. This added information is incorporated in

the generation of new test cases. To achieve this, the following approach has been taken by the
above rule.

Suppose that for an input variable x appearing in a condition under test, the value of x at the

condition boundary has been determined to be x and the input value that has driven one direction of

the condition has been x.. Although we do not k_ow how x is modified along the path leading to the

condition (the value of x' on input may be expected to differ from the value of x at the condition) we
are able to establish that the value of x at the condition is x. In this situation we choose as new test

cases (provided the values lie in the limits allowed for values of x)

xb,(x/xo)+ e

where e is 0 or takes on a small positive or negative value. Listing 3 is an example of this heuristic.

Listing 3.

(defrule generate_symbolic_approximation_plus_increment_test_cases ....

;type information here

(types $?type_list)

(lowbounds $?low_bounds_list)

(high_bounds $?high_bounds_list)

;knowledge about the condition here

(coverage_table ?decision ?condition truelfalse)

(best_test_case ?decision ?condition $?values)

(value at cond ?decision ?condition $?vacs)

(symbolic_boundary ?decision ?condition $?boundaries)
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=>
(bind ?outer_pointerI)

(while (<= ?outer_pointer (length $?values))

(bind ?test_number (test_number))

(format test-case-file " %d" ?test_number)

(bind ?inner_pointer 1)

(while (<= ?inner_pointer (length $?values))

(bind ?type (nth ?inner_pointer $?type_list))

;for the variable under consideration

(if (= ?outer_pointer ?inner_pointer) then

;for its range

(bind ?high_bound

(nth ?inner_pointer $?high_bounds_list))

(bind ?low_bound

(nth ?inner_pointer $71ow_bounds_list))

;get its input value

(bind ? (nth ?inner_pointer $Tvalues))

;and its value at condition

(bind ?Xc (nth ?inner_pointer $?vacs))

;and the boundary of the condition

(bind ?Xb (nth ?inner_pointer $?boundaries))

;generate a guess as to an input value leading to boundary

(bind ?approximation (* (] ?Xi ?Xc) Xb))

;generate a small amount to move around boundary

(if (< (abs ?high_bound) (abs ?low_bound)) then

(bind ?small_bound ?high_bound)

else

(bind ?small_bound ?low_bound))

(bind ?digit O)

(while (!= (trunc ?low_bound) ?low_bound)

(bind ?digit (+ ?digit 1))

(bind ?low_bound (* ?low_bound (** 10 ?digit))))

;call it e

(bind ?e (** 10 (* -I ?digit)))

(bind ?incremented_approximation

;increment the approximation by e

(+ 7approximation ?e))

(if (<= ?incremented_approximation ?high_bound) then

(bind ?test_value ?incremented_approximation)

else

(bind ?test_value ?high_bound))

else

(bind 7test_value (nth 7inner_pointer $?values)))

;write to test case file in appropriate format

(if (eq ?type int) then
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(formattest-case-file"%d" ?test_value))
(if (eq?typefixed) then

(formattest-case-file"%f' ?test_value))
(if (eq ?type float) then

(format test-case-file" %e" ?test_value))

(bind ?inner_pointer (+ ?inner__pointer 1)))

(fprintout test-case-t-de crlf)

;next test case

(bind ?outer__pointer (+ ?outer_pointer 1)))

)

CONCLUSION

The objective of the research has been to achieve more effective test data generation by

combining software coverage analysis techniques and artificial intelligence knowledge based

approaches. The research has concentrated on condition coverage and uses a prototype system built

for expert system based coverage analysis. The success of this approach depends on the search
algorittun used to achieve coverage and the heuristic rules employed by the search. The

effectiveness of rules vary according to the knowledge about the source and the knowledge obtained

by previous test cases. The QUEST/Ada prototype provides an extendible framework which

supports experimentation with rule based approaches to test data generation. In particular it

facilitates the comparison of these rule based approaches to more traditional techniques for ensuring
software test adequacy criteria such as branch coverage, and allows for modification and

experiments with heuristics to achieve this goal.
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